
329 IEEE TRANSACTIONS ON PARALLEL AND DISTRlBUTED SYSTEMS, VOL. 6, NO. 3, MARCH 1995

Short Notes

A Fast Parallel Algorithm for Routing
Unicast Assignments in Bend Networks

Ching-Yi Lee and A. Yavuz Oruc

Absftact-This paper presents a new parallel algorithm for routing
unicast (one-to-one) assignments in Ben& networks. Parallel routing
algorithms for such networks were reported earlier, but these algorithms
were designed primarily to route permutation assignments. The routing
algorithm presented in this paper removes this restriction without an
increase in the order of routing cost or routing time. We realize ulis
new routing algorithm on two different topologies. The algorithm routes
a unicast assignment involving U (k) pairs of inputs and outputs in
O(lg2 k + lg n) time on a completely connected network of n processors
and in O(lg4 k + lg2 k lg n) time on an extended shuffle-exchange
network of n processors. Using O(n lg n) processors, the same algorithm
can he pipelined to route a micast assignments, each involving O(k)
pairs of inputs and outputs, in U(lg2 k + lg n + (a - 1) Ig k) time on
a completely connected network and in U(lg4 k + lg2 k lg n + (a -
l)(lg3 k + Ig k lg n)) time on the extended shuffle-exchange network.
These yield an average routing time of O(lg k) in the first case, and
O(lg3 k + Ig klg n) in the second case, for all a 2 lg n. These
complexities indicate that the algorithm given in this paper is as fast
as Nassimi and Sahni's algorithm for unicast assignments, and with
pipelining, it is faster than the same algorithm at least by a factor of
U(lg n) on both topologies. Furthermore, for sparse assignments, i.e.,
when k = 0(1), it is the first algorithm which has an average routing
time of U(lg n) on a topology with O(n) links.

Index Term-Connector, packet switching network, permutation net-
work, unicast assignment.

I. INTRODUCTION
The Benes network has received much attention in interconnection

network literature because of its O(n lg n)' cost and O(lg n)
depth [l], [9]-[12]. In a way, this network can be considered the
forerunner of most multistage interconnection networks that have
been extensively studied and used in some real parallel computer
systems for interprocessor or processor-memory communications [7],
[14]. Recently, there has been some renewed interest in multistage
networks in particular in Benes and Clos networks for ATM switching
due to their expandibility and modularity [5] . To avoid packet loss
without sacrificing switching speed, these networks need to be routed
fast. Several routing algorithms have been reported for the Benes
network including the O(n lg n) time recursive looping procedure
[13], [16], nonrecursive complete residue partition tree algorithm [9]
and O(lg2 n) time parallel algorithms of Lev et al. [101, and Nassimi
and Sahni [12]. Other routing algorithms for the Benes network
include matching and edge-coloring schemes [2], [3], [6].

While some of these algorithms are fast, their time complexities
are still higher than the O(lg n) depth of the Benes network.

Manuscript received February 1, 1993; revised April 29, 1994. This work is
supported in part by the National Science Foundation under Grant No. CCR-
8708864 and in part by the Minta Martin Fund of the School of Engineering
at the University of Maryland, College Park, MD.

The authors are with the Electrical Engineering Department and Institute
for Advanced Computer Studies, University of Maryland, College Park, MD
20742-3025 USA.

IEEE Log Number 9408135. ' All logarithms are in base 2 unless otherwise stated, and lg n denotes the
logarithm of n in base 2.

0

1

2

1

s Q

Fig. 1. The recursive construction of an n-input Benes network.

Furthermore, these algorithms are primarily designed to route per-
mutation assignments. In case of incomplete assignments where
some inputs are idle, they cannot be used unless the idle inputs
are given dummy outputs. This, however, takes additional time and
may render these algorithms inefficient, especially in case of sparse
assignments-assignments involving O(k) pairs of inputs and outputs,
where k << n.
In this paper, we present an efficient parallel algorithm for routing

incomplete assignments on the Benes network. This routing algorithm
can be run on any parallel computer whose processors are equipped
with a constant number of O(lg n)-bit registers and some simple
arithmetic and logic circuitry that can compare O(lg n) bit numbers
and perform some counting and decoding tasks on them. We realize
our routing scheme on two different topologies. If every pair of pro-
cessors are interconnected by a direct arc then routing an assignment
involving O(k) pairs of inputs and outputs takes O(lgz k + lg n)
time without pipelining and O(lg k) time with pipelining. We also
establish that using a weaker topology, namely the extended shuffle-
exchange network (which will be defined in Section IV), leads to a
routing algorithm with O(lg4 k+lg2 k lg n) time without pipelining
and O(lg3 k + lg klg n) time with pipelining.

II. BASIC FACTS AND DE~NITIONS
An n-network is a directed acyclic graph with n distinguished

source vertices, called inputs, n distinguished sink vertices, called
outputs, and some intemal vertices, called switching nodes. A k-
assignment for an n-network is a pairing of k of its inputs with k
of its outputs such that each output appears in at most one pair. An
assignment is called one-to-one or unicast if each input appears in
at most one pair. A pennutation assignment for an n-network is a
unicast n-assignment. An n-network is said to realize an assignment
if, for each pair (a, b) in the assignment, a path can be formed from
input a to output b by setting the switching nodes in the network with
the constraint that the paths for no two pairs (a, b) and (c, d) overlap
unless a = c. An n-network that can realize all unicast assignments
is called a unicast n-network.

The well-known Benes network is a unicast n-network that is
constructed recursively as shown in Fig. 1. Each 2 x 2 switch can
be set in two ways: either through state where the two inputs are
connected straight-through to the two outputs, or cross state where
the two inputs are connected to opposite outputs.

1045-9219/95$04.00 0 1995 IEEE

I 1 I q n 7 I --

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:50 from IEEE Xplore. Restrictions apply.

330 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 3, MARCH 1995

0
0

0
0

0 -
0
0

0
0

0
0

Fig. 2. H (n) : a one-stage n-network consisting of n / 2 2 x 2 switches.

Paths in an n-network will be established by specifying some
routing bits at its inputs. It is assumed that the routing bits for each

routed from that input to the output specified in the routing bits. A
message and routing bits combined together will be termed a packet.
For an n-input Benes network, the routing part of a packet, to be
called the header, is assumed to have Ig n + 1 bits, and will be
denoted as (r z , dig n - l , . . . , d;, db) for a packet at input i . The bit
T , specifies whether input i is paired with some output. Input i is said

r , = 1, the remaining bits, i.e., (dig n - l , . . . , d", dh), form the output
address which specifies the binary representation of the output paired
with input i with dig n-l being the most significant bit. Besides, a
switch is said to be busy if both of its inputs are busy; it is said to
be semi-busy if one of its inputs is busy and the other input is idle,
and it is said to be idle if both of its inputs are idle.

inputs outputs
.o
. 1
.2
* 3
) 4
.5
.6
.7
.e
.9 . 10
.11 . 13
~ 1 4
b15

input is accompanied by some binary coded message that is to be

cl ~ s w 1 ~ s w 7 ' s w 2 ~ 8 w 4 ~

'2 ~ s w 3 ~ s w ~ ' s w O ~ s w 5 ~

to be busy if rZ = 1, and it is said to be idle if r , = 0. Assuming that

12

Fig. 3. W O chains with respect to a unicast 15-assignment for H (n) where
n = 16.

111. THE ROUTING PRINCIPLE

Unicast assignments for an n-input Benes network can be recur-
sively decomposed into half-sized unicast assignments stage by stage
from left to right.

Notation: For 0 5 i 5 n - 1, if (big - 1 , . . . , b; , bh) is the binary
representation of i , then denotes the integer which has the binary
representation (bf, n-l , . . . , b ; , @), and2 i and a are called a dual
pair of integers. 1 1

Now let H (n) denote a one-stage n-network constituting the first
stage of an n-input Benes network and comprising n/2 2 x 2
switches, SWO, SW1,. . . , SWn/2--1, as shown in Fig. 2.

Dejinition 1: Given a unicast assignment { (i , (T , , dig - 1 , . . . ,
di ,dA)) : 0 5 i 2 n - l} for H (n) , a sequence of switches
S W , , , S W , , , ~ ~ ~ , S W , p - l in H (n) is said to form a chain with
respect to that assignment if, for all 0 5 p 5 p - 2, one of the
inputs of SW,, and one of the inputs of SWZq+, are paired with
a dual pair of outputs and have their r2 ' s set to 1. Furthermore,
SW,, , SW,, , . . , SWZp-, is said to be a closed chain if the other
input of SW,,-, and the other input of SW,, are also paired with a
dual pair of outputs. It is said to be an open chain otherwise.

The size of a chain is the number of switches in the chain. Given
a unicast Ic-assignment for H (n) , the size of a chain can be as large

1)

'6 denotes the binary complement of bit b.

as min{ [(k + 2)/2J, n/2} and3 as small as 1. The number of chains
can be as large as min{k, n/2} (when each chain has size 1) and as
small as 1 (when that chain is of size [(Ic + 2)/2] or [k/2]). Fig. 3
shows a closed chain C1 and an open chain C2 with respect to a
unicast 15-assignment for H (n) where n = 16.

An open chain, say SW,, , SW,, , . . . , SW,,-, , has two end
switches (i.e., SW,, and SWtp-l). Based on the status of the end
switches, two types of open chains are distinguished.

Dejinition 2: An open chain is said to be a full open chain if both
of its end switches are busy or both are semi-busy, and it is said to
be a halfopen chain if one of its end switches is busy and the other
end switch is semi-busy. 11

For example, Cz given in Fig. 3 is a half open chain since SW5
is busy and SW3 is semi-busy.

Theorem I : Given{(i,(rt,dig ,-,,..., d;,dh)):O 5 i 5 n-l},
a unicast k-assignment for H (n) , let (r: ,pi , n - l , . . . , p \ , p b) denote
the header of the packet at output i of H (n) , 0 5 i 5 n - 1, as shown
in Fig. 2. There exist settings for SWO, SWI, . . . , SWn/2-1 such
that((2i,(rbl,p ~ ~ n - l , . . . , p ~ ' , , p : z)) : O l i 5 n/2-1}isaunicast
ko-assignment and {(2i+l , (~ : , + ~ , p : i f n l ~ , . . . ,pi2+1,p:z+1)): 0 5
i 5 n/2 - 1) is a unicast kl-assignment, where ko = [k / 2 1 and
kl = [Ic/2J.

1.1 denotes the largest integer equal to or smaller than I, and r.1 denotes
the smallest integer equal to or larger than 2.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:50 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 3, MARCH 1995 33 1

Pro08 With respect to the given unicast k-assignment and
without loss of generality, suppose that there are c chains, 1 5
c 5 min{k,n/2}, and there are f half open chains among these
c chains, 0 5 f 5 c. From Definition 1, the switches of each
chain can be set such that, given inputs i and j which have r2 =
rJ = 1 and (di,,_,,...,d;,d;,dh) = (d:,, -,,..., d : , d : , z ~) ,
one is routed to an even-numbered output and the other is routed
to an odd-numbered output, and once a switch of the chain is
set then the settings of the other switches of the chain are fixed.
That is, each chain can be set in exactly two ways such that the
above condition can be satisfied. Besides, different chains can be set
mutually independently, and there are 2" ways to set the given c
chains since each chain has two ways of settings. It is obvious that,
if any one of these 2" ways is used to set the switches in H (n) , then
{(2i,(&,p;i ,-1,...,p~*,p~2)): o 5 i 5 n/2- 1) is aunicast ko-

i 5 n/2 - 1) is a unicast kl-assignment for some integers ko and
kl with ko + kl = k. Thus, it suffices to show at least one of the
2" ways of settings will result in ko = rk /21 and kl = Lk/21. For
the closed and full open chains, no matter how they are set, ko and
kl will increase by the same integer since such chains have even
numbers of busy inputs. However, for a half open chain (it has an
odd number of busy inputs), one of its two settings, named type-0
setting, will have ko increase one more than kl , and the other setting,
named type-1 setting, will have ko increase one less than kl . Suppose
the chanins are set in such a way that [f /Z l of the f half open chains
are in their type-0 settings and the other Lf/21 half open chains are
in their type-1 settings. Then, ko = [k/21 and kl = Lk/2J, and the
statement follows. 11

Any algorithm satisfying the statement of Theorem 1 can be used
recursively to set the switches in the first lg n - 1 stages. Thereafter
the packets can be routed on a self-routing basis through the last lg n
stages to their final destinations by decoding the output addresses bit
by bit as identified before 191.

assignment and {(2i + l , (~ : ,+ l ,p :~+nl , , . . . ,p~ 21+1 ,p1 22+1 1): 0 5

IV. THE PARALLEL ROUTING ALGORITHM
Following the discussion in the previous section, it is only neces-

sary to describe a parallel algorithm for H (n) so that the routing
principle stated in Theorem 1 is satisfied. The parallel routing
algorithm for the Benes network then follows.

It is assumed that there are n interconnected processors,
PR(O),PR(l),.--,PR(n - l), and that a packet header
(r,,df, ,_l,-..,di,db) is initially input to PR(i) . PR(i)
and PR(i) are called a dual pair of processors and will determine
the setting of SWL, I~ I of H (n) , 0 5 i 5 n - 1. The time
complexity of the parallel algorithm depends on the interconnection
topology between these n processors. The algorithm will run on two
connection topologies, namely the completely connected network
and the extended shufle-exchange network.

A. The Processor Topologies
The parallel algorithm uses two macro functions: move process and

pairing process for exchanging certain routing bits among k-subsets
of n processors. A move process permutes routing bits among a subset
of k processors. A pairing process marks a subset of k processors
such that Lk/2J of them are marked type 0 and [k/21 of them are
marked type 1.

The time complexity to execute these two processes depends on the
topology which interconnects the n processors. We will consider two
topologies. The first is the completely connected network in which
there is a link between every two of the n processors. It is obvious
that the move process can be accomplished on this topology in O(1)

time for any k, 1 5 k 5 n. To carry out the pairing process, consider
any k of the n processors. We can always construct a (2r1g 'l-1)-
node binary tree containing these k processors using the links of the
completely connected network interconnecting the n processors. It is
not difficult to see that the pairing process can then be performed on
the binary tree in O(1g k) time.

The second topology we will use is called the extended shufle-
exchange network in which (a) each dual pair of processors is con-
nectedbyalink, and(b)processors PR(O),PR(l) , . . - , PR(n/2--
1) are (n/2")-shuffle connected for m = 0,1,. . . , lg n - 2,
(i.e., PR(O), P R (l) , . . . , PR(n - 1) is n-shuffle connected,
PR(O), PR(l), . . . , PR(n /2 - 1) is n/2-shuffle connected, and
so on). Compared with the O(n2) links needed for the completely
connected network, it is easily verified that the extended shuffle-
exchange network requires only O(n) links which is also the case
with the ordinary shuffle-exchange network.

To execute a move process, the extended shuffle-exchange network
takes three steps. Suppose that some routing bits are to be permuted
among some k processors, 2 5 k 5 n (k = 1 is a trivial case). In
the first step, the k routing bits are moved to any k of the first 2 r'g 'l
processors by passing lg n times through the n-shuffle connection.
In the second step, these k routing bits are sorted according to
their destination addresses by passing lg2 k' times through the k'-
shuffle interconnection between PR(O), P R (l) , - . . , PR(k' - l),
where k' = 2f1g k1 [8], [15]. In the third step, the sorted packets are
moved to their final destinations by passing them lg n times through
the n-shuffle connection. Therefore, a move process involving k
routing bits can be executed over the extended shuffle-exchange
network in O(lg2 k + lg n) time. We note that if we had used an
ordinary shuffle-exchange network then the second step would take
O(lg2 n) time. The extended shuffle-exchange network avoids this by
first concentrating the k routing bits into the first k processors and
then using the smallest shuffle-exchange subnetwork that contains
those k processors.

As for the pairing process, we first observe a binary tree of n
processors can be emulated by passing lg n times over the ordinary
n-processor shuffle-exchange network. Since every k processors we
choose to mark constitute the leaves of this binary tree, the pairing
of k processors can be performed in O(1g n) time as is already
observed earlier.

B. The Parallel Routing Scheme
From the proof of Theorem 1 in Section III, each chain has two

settings (type-0 and type-I settings), and the inputs of its switches can
be partitioned into two equivalence classes such that the inputs in one
equivalence class are connected to even-numbered outputs and the
inputs in the other equivalence class are connected to odd-numbered
outputs. Once the equivalence classes of inputs in a chain are
established, the settings of switches in the chain are straightforward.
The parallel algorithm that follows will use such equivalence classes
to speed up the switch settings. The following proposition shows how
to determine the pairs of inputs that are in the same equivalence class,
and is similar to the observation given on p. 150 in [12].

Proposition I : Let { (i , (r t , d i g ,,-l,.-.,di,dh)): 0 5 i 5 n -
1) be a unicast assignment for H (n) . If (d $, -,,..., d;,dh) =
(d;, n-l,...,d:,zi), rz = rI = 1 and i # j , then inputs i and 3
are in the same equivalence class and inputs j and 5 are in another
equivalence class.

Remark 1: This equivalence among the inputs will be noted by
associating each input with an ordered quadruple (c ~ , i, e , , p ,) where
cz is a single bit used to indicate if this input belongs to a closed or
open chain (c, = 0 means i belongs to an open chain and c, = 1
means i belongs to a closed chain), i denotes the input itself, e, points

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:50 from IEEE Xplore. Restrictions apply.

332

0 -
1
2
3
4
6 - 8 - :

- 0
10
11
12
13
14
15

E E E TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 3, MARCH 1995

(12

-

PR
0
I
2
3
4
6
6
7
6
0
10
11
12
13
14
16

TheFintStep TheSewndStep The Third Step

(a) (b) (4
Fig. 4. The three steps of the first phase by using the unicast 15-assignment
given in Fig. 3 as an example.

to an input that is in the same equivalence class as this input, and
pz , called the representative of this input, will be used to route this
input. If i and j satisfy the hypothesis of Proposition 1, two ordered
quadruples (1; i, ?; p,) and (1; j , 5; p,) will be established, where
their first elements are initialized to 1 and their fourth elements are
initialized top, = min{i, ?} and p, = min{j, I } . If T * = 1 and there
is no T~ = 1 for which (dig n- l , . . . , d;, d i) = (d;g n- 1 , . . . , d:, 2;)
(i.e., input i is paired with an output whose dual output is idle), an
ordered quadruple (1; i, -1; i) will be established, where -1 is used
to denote that input i belongs to a busy end switch of an open chain,
or an open chain of size 1. If T , = 0 and T; = 1, an ordered quadruple
(0; i, -2; i) will be established, where -2 is used to denote that input
i belongs to a semi-busy end switch of an open chain.

The parallel algorithm can be roughly divided into four phases.
In the first phase, ordered quadruples as defined in Remark 1 are
established. In the second phase, the representative in each quadruple
is computed such that each input knows to which chain it belongs and
all the inputs in the same equivalence class will agree on a common
representative. In the third phase, each half open chain is assigned
a type-0 or type-l setting so that the statement of Theorem 1 (i.e..
ko = [k/21 and kl = l k / 2 J) is satisfied. In the fourth phase, each
switch is set by using the representatives of its two inputs.

1) First Phase: The first phase applies Remark 1 to establish
ordered quadruples, and can be further decomposed into three steps.
In the first step, packet headers are input to the processors, and the
idle inputs which belong to semi-busy switches have their quadruples
established. In the second step, packet headers are permuted among
the processors so that each dual pair of processors can apply the steps
in Remark 1 in parallel. In the third step, the remaining quadruples
are established and moved to the processors specified by their second
elements, and their first elements are changed to 0 if their third
elements are - 1. An illushation of these three steps is given in Fig. 4.

2) Second Phase: The second phase is an iterative procedure
which computes the representative of each quadruple using a pointer
jumping technique [4]. A chain, depending upon its type, is decom-
posed into two sequences of quadruples in the first phase where the
quadruples in each sequence belong to the same equivalence class. Let
us use the quadruples in each sequence as nodes to form a directed
graph in which a directed arc is established from a quadruple to
another quadruple if and only if the third element of the former
quadruple is equal to the second element of the latter quadruple.
Then, a k-size closed chain will form two k-node closed subchains
for which each node has an incoming arc and an outgoing arc, and
a k-size open chain will form two k-node open subchains for which
each source node has an outgoing arc, each sink node has an incoming
arc, and &h of the other nodes has an incoming arc and an outgoing
arc. For example, Fig. 5 explicitly depicts the four subchains obtained
from the quadruples in (c) of Fig. 4.

I(

Fig. 5. The subchains formed from the quadruples in Fig. 4(c).

These subchains will be used to facilitate an understanding of the
iterative procedure. If a quadruple is in a closed subchain in the
mth iteration, its first element is 1, its third element points to the
second element of its 2"th successor and its last element points
to the smallest input among the 2" second elements of its first 2"
successors. If a quadruple is in an open subchain, the way its elements
are updated depends on when it is known that this quadruple is in
an open subchain. When this quadruple is at least 2" far away from
the sink quadruple in the mth iteration, its elements are updated in
the same way as if this quadruple is in a closed subchain. When this
quadruple is at distance less than 2" - 1 away from the sink quadruple
in the mth iteration, it is recognized to be in an open subchain, and
its first element is changed to 0, its third element is changed to -1
or -2 (the same as the third element of the sink quadruple) and its
last element points to the second element of the sink quadruple. That
is, for each open subchain, the updating information is exponentially
propagated from the sink quadruple to the source quadruple. Using
this updating procedure, after lgrkl iterations, any k quadruples
that form a closed subchain will select the smallest input among
their second elements as their common representative, and any IC
quadruples that form an open subchain will select the second element
of the sink quadruple as their common representative. For example,
the four subchains in Fig. 5 need two iterations to determine their
representatives at the end of which inputs 2, 3, 11 and 6 are selected
as the representatives of the quadruples in SC: , SC:' , SC; and SC;' ,
in that order.

Now we proceed to describe the second phase of the algorithm.
Given a unicast k'-assignment, the second phase can take as many
as lg rkl iterations, where k = min{ L(k' + 2) / 2 1 , n / 2 } . This is
because there is no prior information about the exact sizes of the
subchains and mini [(k' + 2) / 2 J , n / 2 } is an upper bound for the
sizes of the subchains with respect to the k'-assignment as stated
in the previous section. Technically, each iteration can be further
decomposed into three steps. In the first step, those quadruples whose
first elements are 1 are duplicated and their copies are moved to
new processors specified by their third elements. In the second step,
each processor updates the quadruple@) that it holds as follows: 1)
when it holds only a quadruple, it "discards" the quadruple if the
first element of the quadruple is 1; otherwise it keeps the quadruple
intact; 2) when it holds (1; I, i; p ~) and (1; i, j ; p i) , it replaces the first
quadruple by (1; l , j ;p i) where pi = min{p,,pl} and discards the
second quadruple; 3) when it holds (1; I, i;pl) and (0; i , +; j) where
* is - 2 or - 1, it replaces the first quadruple by (1 ; 1, *; i) and keeps
the second quadruple intact. In the third step, each updated quadruple
is moved to the processor specified by its second element if its first
element remains 1, and its first element is changed to 0 if its third
element is -1 or -2 . For example, we illustrate the second phase in
(a) to (e) of Fig. 6, where the transitions from (a) to (b) and from (b)
to (c) constitute the first iteration, and the transitions from (c) to (d)
and from (d) to (e) constitute the second iteration. Note that, after

I - -- I I I T -

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:50 from IEEE Xplore. Restrictions apply.

. I

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 3. MARCH 1995

PRS
0
1
2
3
4
5
6
7
8
Q
10
11
12
13
14
16

PI3
0
1
2
3
4
6 s:

andmove Q

7 10
11
12
13
14
15

PR
0
1
2
3
4
6

-;
lpdate 8

andmove g - 10
11
12
13
14
16

PR
0
1
2
3
4
5

- f
peiriner-= 8

Q
10
11
12
13
14
16

Fig. 6. The second and third phases of the parallel algorithm that follow the first phase shown in Fig. 4.

the computation of the second phase, the two quadruples held by
PR(i) and PR(i) correspond to inputs i and k of sWLs/2J. Besides,
if the first elements of the two quadruples are 1, SWL,/ZJ belongs to
a closed chain; otherwise, it belongs to an open chain. Furthermore,
SWL+J belongs to a full open chain if the third elements are both
-1 or -2, and to a half open chain if one of the third elements is
-1 and the other is -2.

3) Third Phase: The third phase assigns types of settings to half
open chains as discussed in the proof of Theorem 1 and using the
pairing process as described in Section IV-A. At the end of the
pairing process, the third element in the quadruple corresponding
to the busy input of each semi-busy end switch is changed to 0
if the corresponding processor is marked type 0 or changed to
1 if it is marked type 1. For example, Fig. 6(f) shows a result
of the third phase, where the third elements in the quadiuples in
PR(O) ,PR(l l) are changed to 0 and the third elements in the
quadruples in PR(7),PR(12) are changed to 1.

4) Fourth Phase: Having decided the types of each chain and
computed the representative of each quadruple, the fourth phase
determines the settings of switches in H (n) . Each switch is set by a
dual pair of processors which hold the two quadruples that correspond
to the inputs of this switch, and the setting depends on the type of
the chain to which this switch belongs.

Casel:IfPR(i) holds (l ; i , k ; j) andPR(7) holds(l;T,l;j),then
swL+?J is in a closed chain. Assuming that SWL,/~J is set through,
SWL, /~J must be set through if i - j is even and cross otherwise.

333

Case 2: If PR(i) holds (O;i,p;j) and PR(i) holds (O ; i , p ; Z)
where p = -1 or p = -2, then SWL, /~J is in a full open chain,
and SWL,/~J and SWL,/~J are the end switches. Assuming that
the smaller one of SWL,/nJ and SWL+J is set through, when
j < 1, SWL,/~J must be set through if i - j is even and cross
otherwise, and when I < j, SWL,/~J must be set through if 5 - 1
is even and cross Otherwise.

Case 3: If PR(i) holds (0; i, q; j) and PR(i) holds (0; T, -2; 1)
where q = 0 or 1, then SWLr/2J is in a half open chain and swL,/2J
is the semi-busy end switch. When q = 0 (the half open chain is
assigned Type-0 Setting), SWL,I~J must be set through if i is even
and cross otherwise, and when q = 1 (the half open chain is assigned
Type-1 Setting), SWL, /~J must be set through if i is odd and cross
otherwise. For example, switches SWo, SWl, SW4, SWS and SW7
in Fig. 3 are set through and switches SW2, SW3 and SW5 are
set cross by checking the final quadruples held in each dual pair of
processors as shown in Fig. 6(Q.

C. The Parallel Algorithm
The following parallel routing algorithm formalizes the steps

outlined in the previous subsection.
Step1:Given (i , (r , , d $, _,,..., d ‘ , , d ~)) input toPR(i) ,PR(i)

establishes (0; i, -2; i) if T * = 0,O 5 i 5 n- 1. Let k’ be the number
of rl’s whose value are 1, and let k = min { [(k’ + 2)/2J, n/2}. Let
m be a parameter initialized to 0.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:50 from IEEE Xplore. Restrictions apply.

334 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 3, MARCH 1995

Step2:Move(i ,(~, ,d$, _,,..., d I , d ~)) t o P R (z) i f ~ , = l a n d
(d L . . . , d; , db) is the binary representation of c, 0 5 i 5 n - 1.

Step 3: Given PR(c) holding (i , ~ ,) and PR(5) holding
(j , T,) , PR(z) establishes (1; i ,T;!z) and PR(5) establishes
(l ; j , i ;p ,) where p t = min{i,j} and p , = min{j,i} if
T , = T, = 1, or PR(z) establishes (l ; i , -1;i) if T , = 1
and T~ = 0, or PR(3) establishes (l;j,-1;j) if T , = 0 and
T~ = l,O~z~n-l.Then,(l;i,j;p,)ismovedtoPR(i),andif
the third element is “- 1” then PR(i) changes the first element to 0,
0 5 i 5 n - 1. (Step 1, Step 2 and Step 3 constitute the first phase.)

Step 4: m = m + 1. If m 5 rlg kl then go to Step 5, else go
to Step 8.

Step 5: Duplicate (1; 1 , i ; p l) and move a copy to PR(i), 0 5 i 5
n - 1. (Those quadruples whose first elements are 1 are duplicated
and moved to new processors specified by their third elements.)

Srep 6: The action of each processor depends on the quadruple(s)
that it holds:

1) when PR(i) holds only 1 quadruple: If the first element of the
quadruple is 1 then PR(i) discards the quadruple, else PR(i)
keeps the quadruple intact;

2) when PR(i) holds (l ; l , i ;p l) and (l ; i , j ; p z) : PR(i) replaces
the first quadruple by (1; 1 , j ; p ;) where pi = min { p , , p l } and
discards the second quadruple;

3) when PR(i) holds (1; 1, i ; p l) and (0; i , * ; j) where * is -2 or
-1: PR(i) replaces the first quadruple by (1; I , *; i) and keeps
the second quadruple intact.

Step 7: Move (1; i, j ; p .) to PR(i) , and if the third element is “-1”
or “-2” then PR(i) changes the first element to 0, 0 5 i 5 n - 1.
Go to Step 4. (Step 4, Step 5 , Step 6 and Step 7 constitute the second
phase.)

Step 8: If PR(i) holds (0; i , - 1; j) and PR(i) holds (0; E , -2; a)
(i.e., input i is the busy input of SWL,I~J which is the semi-busy
switch of a half open chain), then PR(i) is marked type 0 or type 1
by the pairing process, 0 5 i 5 n - 1. If PR(i) is marked type 0
then (0; i , -1; j) is changed to (0; i , 0; j) . Otherwise, it is changed
to (0; i , 1; j) . (Step 8 constitutes the third phase.)

Step 9:
Case 1: If PR(i) holds (l ; i , j ; p c) and PR(i) holds

(l ;a , l ;pz) , then PR(i) sets SWL,I~J through if i - p, is even and
cross otherwise, 0 5 i 5 n - 1.

Case 2: If PR(i) holds (0 ; i , p ; j) and PR(k) holds (O ; a , p ; l)
where p = -1 or p = -2, then they compare j and 1. When
j < I , PR(i) sets SWL,I~J through if i - j is even and cross
otherwise, and when 1 <j, PR(2) sets SWL./~J through if i - 1 is
even and cross otherwise, 0 5 i 5 n - 1.

Case 3: If PR(i) holds (0; i, q; j) and PR(i) holds (0; i, -2; 1)
where q = 0 or q = 1, PR(i) sets S W L , I ~ ~ through if i - q is even
and cross otherwise, 0 5 i 5 n - 1. (Step 9 constitutes the fourth

That this algorithm is correct can easily be proved and is omitted
for lack of space. In the algorithm, move processes dominate the
time complexity. As shown in Section IV-A, each move process can
be executed in 0(1) time if the processors are completely intercon-
nected, and in O(lg2 k + lg n) time if the processors are extended
shuffle-exchange interconnected. For a unicast k-assignment, since
there are O(lg k) move processes in the algorithm, the switches in
H (n) can be set in O(lg k) time if the processors are interconnected
by a completely connected network, and in O(lg3 k+lg klg n) time
if they are interconnected by an extended shuffle-exchange network.

phase.) II

This algorithm can be recursively applied to set switches in the first
half stages. In fact, only the first llg k] stages would apply this
algorithm for a unicast k-assignment since this algorithm decomposes
an assignment into two half-sized assignments stage by stage as
required in the statement of Theorem 1. Therefore, by using this
parallel algorithm, the routing time for an n-input Benes network to
realize a unicast k-assignment is O(lg2 k+lg n) if the interprocessor
connection topology is complete, and is O(lg4 k + lg2 klg n) if
the interprocessor connection topology is extended shuffle-exchange
network.

V. CONCLUDING REMARKS

The paper presented an extension of Nassimi and Sahni’s parallel
routing algorithm for the Benes network to unicast assignments.
For any unicast k-assignment, the algorithm takes O(lg2 k + Ig n)
time on the n-processor completely connected network and it takes
O(lg4 k + lg2 k lg n) time on the n-processor extended perfect
shuffle-exchange network. The algorithm can easily be pipelined
to route a set of unicast assignments using O(n lg n) processors.
Assuming that we have a unicast assignments that need to be
realized on an n-input Benes network, it can be shown that, with
pipelining, the total routing time is O(lgz k + Ig n + (a - 1) Ig k)
for completely connected topology, and is O(lg4 k + lg2 k lg n +
(a - l)(lg3 k +lg k lg n)) for extended shuffle-exchange topology.
Thus, when a 2 lg n, the average routing time to realize a unicast
k-assignment is reduced with pipelining to O(lg k) in the first case,
and to O(lg3 k + lg k lg n) in the second case.

REFERENCES

V. BeneS, Mathematical Theory of Connecting Networks and Telephone
Trafic. New York Academic, 1965.
C. Cardot, “Comments on a simple algorithm for the control of re-
arrangeable switching networks,” IEEE Trans. Commun., p. 395, Apr.
1986.
J. Carpinelli and A. Y. O q , “Applications of edge-coloring algorithms
to routing in parallel computers,” in Proc. In?. Conf: Supercomp., Santa
Clara, CA, May 1988.
T. Cormen, C. E. Lesiserson, and R. L. Rivest, Introduction fo Algo-
rithms. Cambridge, MA: The MIT Press, 1990, pp. 692-701.
M. J. Karol and Chih-Lin I, “Performance analysis of a growable
architecture for broadband packet (A m) switching,” IEEE Trans.
Commun., pp. 431439, Feb. 1992.
F. R. Hwang, “Control algorithms for rearrangeable Clos networks,”
IEEE Trans. Commun., pp. 952-954, Aug. 1983.
J. Konicek e? al., “The organization of the cedar system,” in Proc. In?.
Con$ Parallel Processing, St. Charles, IL, Aug. 1991, pp. 49-56.
D. Knuth, The Art of Computer Programing: Sorting and Searching.
Reading, MA: Addison-Wesley, 1973.
K. Y. Lee, “A new Benes network control algorithm,” IEEE Trans.
Comput., pp. 768-772, June 1987.
G. F. Lev, N. Pippenger, and L. Valiant, “A fast parallel routing
algorithm for routing in permutation networks,” IEEE Tram. Comput.,
pp. 93-100, Feb. 1981.
D. Nassimi and S. Sahni, “A self-routing Benes network and parallel
permutation algorithms,” ZEEE Trans. Comput., pp. 332-340, May 1981.
D. Nassimi and S. Sahni, “Parallel algorithms to set up the BeneS
network,” IEEE Trans. Comput., pp. 148-154, Feb. 1982.
D. Opferman and N. Tsao-Wu, “On a class of rearrangeable switching
networks,” Bell Syst. Tech. J., pp. 1579-1618, May-June 1971.
H. J. Siege1 e? al., “Using the multistage cube network topology in
parallel supercomputers,” Proc. IEEE, pp. 1932-1953, Dec. 1989.
H. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans.
Compu?., pp. 153-161, Feb. 1971.
A. Waksman, “A permutation network,” J. ACM, pp. 159-163, Jan.
1968.

- -
_I 7 1 I I

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:50 from IEEE Xplore. Restrictions apply.

