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Short Notes 

A Fast Parallel Algorithm for Routing 
Unicast Assignments in Bend Networks 

Ching-Yi Lee and A. Yavuz Oruc 

Absftact-This paper presents a new parallel algorithm for routing 
unicast (one-to-one) assignments in Ben& networks. Parallel routing 
algorithms for such networks were reported earlier, but these algorithms 
were designed primarily to route permutation assignments. The routing 
algorithm presented in this paper removes this restriction without an 
increase in the order of routing cost or routing time. We realize ulis 
new routing algorithm on two different topologies. The algorithm routes 
a unicast assignment involving U ( k )  pairs of inputs and outputs in 
O(lg2 k + lg n )  time on a completely connected network of n processors 
and in O(lg4 k + lg2 k lg n )  time on an extended shuffle-exchange 
network of n processors. Using O( n lg n )  processors, the same algorithm 
can he pipelined to route a micast assignments, each involving O(k)  
pairs of inputs and outputs, in U(lg2 k + lg n + ( a  - 1) Ig k )  time on 
a completely connected network and in U(lg4 k + lg2 k lg n + (a - 
l)(lg3 k + Ig k lg n ) )  time on the extended shuffle-exchange network. 
These yield an average routing time of O(lg k )  in the first case, and 
O(lg3 k + Ig klg n )  in the second case, for all a 2 lg n. These 
complexities indicate that the algorithm given in this paper is as fast 
as Nassimi and Sahni's algorithm for unicast assignments, and with 
pipelining, it is faster than the same algorithm at least by a factor of 
U(lg n )  on both topologies. Furthermore, for sparse assignments, i.e., 
when k = 0(1), it is the first algorithm which has an average routing 
time of U(lg n )  on a topology with O(n)  links. 

Index Term-Connector, packet switching network, permutation net- 
work, unicast assignment. 

I. INTRODUCTION 
The Benes network has received much attention in interconnection 

network literature because of its O(n lg n)' cost and O(lg n) 
depth [l], [9]-[12]. In a way, this network can be considered the 
forerunner of most multistage interconnection networks that have 
been extensively studied and used in some real parallel computer 
systems for interprocessor or processor-memory communications [7], 
[14]. Recently, there has been some renewed interest in multistage 
networks in particular in Benes and Clos networks for ATM switching 
due to their expandibility and modularity [5] .  To avoid packet loss 
without sacrificing switching speed, these networks need to be routed 
fast. Several routing algorithms have been reported for the Benes 
network including the O(n lg n) time recursive looping procedure 
[13], [16], nonrecursive complete residue partition tree algorithm [9] 
and O(lg2 n) time parallel algorithms of Lev et al. [ 101, and Nassimi 
and Sahni [12]. Other routing algorithms for the Benes network 
include matching and edge-coloring schemes [2], [3], [6]. 

While some of these algorithms are fast, their time complexities 
are still higher than the O(lg n) depth of the Benes network. 
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Fig. 1. The recursive construction of an n-input Benes network. 

Furthermore, these algorithms are primarily designed to route per- 
mutation assignments. In case of incomplete assignments where 
some inputs are idle, they cannot be used unless the idle inputs 
are given dummy outputs. This, however, takes additional time and 
may render these algorithms inefficient, especially in case of sparse 
assignments-assignments involving O(k)  pairs of inputs and outputs, 
where k << n. 
In this paper, we present an efficient parallel algorithm for routing 

incomplete assignments on the Benes network. This routing algorithm 
can be run on any parallel computer whose processors are equipped 
with a constant number of O(lg n)-bit registers and some simple 
arithmetic and logic circuitry that can compare O(lg n) bit numbers 
and perform some counting and decoding tasks on them. We realize 
our routing scheme on two different topologies. If every pair of pro- 
cessors are interconnected by a direct arc then routing an assignment 
involving O(k)  pairs of inputs and outputs takes O(lgz k + lg n) 
time without pipelining and O(lg k) time with pipelining. We also 
establish that using a weaker topology, namely the extended shuffle- 
exchange network (which will be defined in Section IV), leads to a 
routing algorithm with O(lg4 k+lg2 k lg n) time without pipelining 
and O(lg3 k + lg klg n) time with pipelining. 

II. BASIC FACTS AND DE~NITIONS 
An n-network is a directed acyclic graph with n distinguished 

source vertices, called inputs, n distinguished sink vertices, called 
outputs, and some intemal vertices, called switching nodes. A k- 
assignment for an n-network is a pairing of k of its inputs with k 
of its outputs such that each output appears in at most one pair. An 
assignment is called one-to-one or unicast if each input appears in 
at most one pair. A pennutation assignment for an n-network is a 
unicast n-assignment. An n-network is said to realize an assignment 
if, for each pair (a, b) in the assignment, a path can be formed from 
input a to output b by setting the switching nodes in the network with 
the constraint that the paths for no two pairs (a, b)  and (c, d) overlap 
unless a = c. An n-network that can realize all unicast assignments 
is called a unicast n-network. 

The well-known Benes network is a unicast n-network that is 
constructed recursively as shown in Fig. 1. Each 2 x 2 switch can 
be set in two ways: either through state where the two inputs are 
connected straight-through to the two outputs, or cross state where 
the two inputs are connected to opposite outputs. 
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Fig. 2. H ( n ) :  a one-stage n-network consisting of n / 2  2 x 2 switches. 

Paths in an n-network will be established by specifying some 
routing bits at its inputs. It is assumed that the routing bits for each 

routed from that input to the output specified in the routing bits. A 
message and routing bits combined together will be termed a packet. 
For an n-input Benes network, the routing part of a packet, to be 
called the header, is assumed to have Ig n + 1 bits, and will be 
denoted as ( r z ,  dig n - l , .  . . , d;, db) for a packet at input i .  The bit 
T ,  specifies whether input i is paired with some output. Input i is said 

r ,  = 1, the remaining bits, i.e., (dig n - l , .  . . , d", dh), form the output 
address which specifies the binary representation of the output paired 
with input i with dig n-l being the most significant bit. Besides, a 
switch is said to be busy if both of its inputs are busy; it is said to 
be semi-busy if one of its inputs is busy and the other input is idle, 
and it is said to be idle if both of its inputs are idle. 

inputs outputs 
.o  
. 1  
.2  
* 3  
) 4  
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~ 1 4  
b15 

input is accompanied by some binary coded message that is to be 

cl ~ s w 1 ~ s w 7 ' s w 2 ~ 8 w 4 ~  

'2 ~ s w 3 ~ s w ~ ' s w O ~ s w 5 ~  

to be busy if rZ = 1, and it is said to be idle if r ,  = 0. Assuming that 

12 

Fig. 3. W O  chains with respect to a unicast 15-assignment for H ( n )  where 
n = 16. 

111. THE ROUTING PRINCIPLE 

Unicast assignments for an n-input Benes network can be recur- 
sively decomposed into half-sized unicast assignments stage by stage 
from left to right. 

Notation: For 0 5 i 5 n - 1, if (big - 1 ,  . . . , b; , bh) is the binary 
representation of i ,  then denotes the integer which has the binary 
representation (bf, n-l , .  . . , b ; ,  @), and2 i and a are called a dual 
pair of integers. 1 1  

Now let H ( n )  denote a one-stage n-network constituting the first 
stage of an n-input Benes network and comprising n/2 2 x 2 
switches, SWO, SW1,. . . , SWn/2--1, as shown in Fig. 2. 

Dejinition 1: Given a unicast assignment { ( i ,  ( T ,  , dig - 1 ,  . . . , 
di ,dA)) :  0 5 i 2 n - l} for H ( n ) ,  a sequence of switches 
S W , , , S W , , , ~ ~ ~ , S W , p - l  in H ( n )  is said to form a chain with 
respect to that assignment if, for all 0 5 p 5 p - 2, one of the 
inputs of SW,, and one of the inputs of SWZq+, are paired with 
a dual pair of outputs and have their r2 ' s  set to 1. Furthermore, 
SW,, , SW,, , . . , SWZp-, is said to be a closed chain if the other 
input of SW,,-, and the other input of SW,, are also paired with a 
dual pair of outputs. It is said to be an open chain otherwise. 

The size of a chain is the number of switches in the chain. Given 
a unicast Ic-assignment for H ( n ) ,  the size of a chain can be as large 

1) 

'6 denotes the binary complement of bit b. 

as min{ [(k + 2)/2J, n/2} and3 as small as 1. The number of chains 
can be as large as min{k, n/2} (when each chain has size 1) and as 
small as 1 (when that chain is of size [(Ic + 2)/2] or [k/2]). Fig. 3 
shows a closed chain C1 and an open chain C2 with respect to a 
unicast 15-assignment for H ( n )  where n = 16. 

An open chain, say SW,, , SW,, , . . . , SW,,-, , has two end 
switches (i.e., SW,, and SWtp-l). Based on the status of the end 
switches, two types of open chains are distinguished. 

Dejinition 2: An open chain is said to be a full open chain if both 
of its end switches are busy or both are semi-busy, and it is said to 
be a halfopen chain if one of its end switches is busy and the other 
end switch is semi-busy. 11 

For example, Cz given in Fig. 3 is a half open chain since SW5 
is busy and SW3 is semi-busy. 

Theorem I :  Given{(i,(rt,dig ,-,,..., d;,dh)):O 5 i 5 n-l}, 
a unicast k-assignment for H ( n ) ,  let (r: ,pi ,  n - l , .  . . , p \ , p b )  denote 
the header of the packet at output i of H ( n ) ,  0 5 i 5 n - 1, as shown 
in Fig. 2. There exist settings for SWO, SWI, .  . . , SWn/2-1 such 
that((2i,(rbl,p ~ ~ n - l , . . . , p ~ ' , , p : z ) ) : O l i  5 n/2-1}isaunicast 
ko-assignment and {(2i+l ,  ( ~ : , + ~ , p : i f n l ~ , . . .  ,pi2+1,p:z+1)): 0 5 
i 5 n/2 - 1) is a unicast kl-assignment, where ko = [ k / 2 1  and 
kl = [Ic/2J. 

1.1 denotes the largest integer equal to or smaller than I, and r.1 denotes 
the smallest integer equal to or larger than 2. 
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Pro08 With respect to the given unicast k-assignment and 
without loss of generality, suppose that there are c chains, 1 5 
c 5 min{k,n/2}, and there are f half open chains among these 
c chains, 0 5 f 5 c. From Definition 1, the switches of each 
chain can be set such that, given inputs i and j which have r2  = 
rJ = 1 and (di,,_,,...,d;,d;,dh) = (d:,, -,,..., d : , d : , z ~ ) ,  
one is routed to an even-numbered output and the other is routed 
to an odd-numbered output, and once a switch of the chain is 
set then the settings of the other switches of the chain are fixed. 
That is, each chain can be set in exactly two ways such that the 
above condition can be satisfied. Besides, different chains can be set 
mutually independently, and there are 2" ways to set the given c 
chains since each chain has two ways of settings. It is obvious that, 
if any one of these 2" ways is used to set the switches in H ( n ) ,  then 
{(2i,(&,p;i ,-1,...,p~*,p~2)): o 5 i 5 n/2-  1) is aunicast ko- 

i 5 n/2 - 1) is a unicast kl-assignment for some integers ko and 
kl with ko + kl = k. Thus, it suffices to show at least one of the 
2" ways of settings will result in ko = rk /21  and kl = Lk/21. For 
the closed and full open chains, no matter how they are set, ko and 
kl will increase by the same integer since such chains have even 
numbers of busy inputs. However, for a half open chain (it has an 
odd number of busy inputs), one of its two settings, named type-0 
setting, will have ko increase one more than kl , and the other setting, 
named type-1 setting, will have ko increase one less than kl . Suppose 
the chanins are set in such a way that [ f /Z l  of the f half open chains 
are in their type-0 settings and the other Lf/21 half open chains are 
in their type-1 settings. Then, ko = [k/21 and kl = Lk/2J, and the 
statement follows. 11 

Any algorithm satisfying the statement of Theorem 1 can be used 
recursively to set the switches in the first lg n - 1 stages. Thereafter 
the packets can be routed on a self-routing basis through the last lg n 
stages to their final destinations by decoding the output addresses bit 
by bit as identified before 191. 

assignment and {(2i + l , (~ : ,+ l ,p :~+nl , , . . . ,p~  21+1 ,p1 22+1 1): 0 5 

IV. THE PARALLEL ROUTING ALGORITHM 
Following the discussion in the previous section, it is only neces- 

sary to describe a parallel algorithm for H ( n )  so that the routing 
principle stated in Theorem 1 is satisfied. The parallel routing 
algorithm for the Benes network then follows. 

It is assumed that there are n interconnected processors, 
PR(O),PR(l),.--,PR(n - l), and that a packet header 
(r,,df, ,_l,-..,di,db) is initially input to PR(i) .  PR( i )  
and PR( i )  are called a dual pair of processors and will determine 
the setting of SWL, I~ I  of H ( n ) ,  0 5 i 5 n - 1. The time 
complexity of the parallel algorithm depends on the interconnection 
topology between these n processors. The algorithm will run on two 
connection topologies, namely the completely connected network 
and the extended shufle-exchange network. 

A. The Processor Topologies 
The parallel algorithm uses two macro functions: move process and 

pairing process for exchanging certain routing bits among k-subsets 
of n processors. A move process permutes routing bits among a subset 
of k processors. A pairing process marks a subset of k processors 
such that Lk/2J of them are marked type 0 and [k/21 of them are 
marked type 1. 

The time complexity to execute these two processes depends on the 
topology which interconnects the n processors. We will consider two 
topologies. The first is the completely connected network in which 
there is a link between every two of the n processors. It is obvious 
that the move process can be accomplished on this topology in O( 1) 

time for any k, 1 5 k 5 n. To carry out the pairing process, consider 
any k of the n processors. We can always construct a (2r1g 'l-1)- 
node binary tree containing these k processors using the links of the 
completely connected network interconnecting the n processors. It is 
not difficult to see that the pairing process can then be performed on 
the binary tree in O(1g k )  time. 

The second topology we will use is called the extended shufle- 
exchange network in which (a) each dual pair of processors is con- 
nectedbyalink, and(b)processors PR(O),PR(l) , . . - ,  PR(n/2-- 
1) are (n/2")-shuffle connected for m = 0,1,. . . , lg n - 2, 
(i.e., PR(O), P R ( l ) ,  . . . , PR(n - 1) is n-shuffle connected, 
PR(O), PR( l), . . . , PR(n /2  - 1) is n/2-shuffle connected, and 
so on). Compared with the O(n2)  links needed for the completely 
connected network, it is easily verified that the extended shuffle- 
exchange network requires only O(n)  links which is also the case 
with the ordinary shuffle-exchange network. 

To execute a move process, the extended shuffle-exchange network 
takes three steps. Suppose that some routing bits are to be permuted 
among some k processors, 2 5 k 5 n (k = 1 is a trivial case). In 
the first step, the k routing bits are moved to any k of the first 2 r'g 'l 
processors by passing lg n times through the n-shuffle connection. 
In the second step, these k routing bits are sorted according to 
their destination addresses by passing lg2 k' times through the k'- 
shuffle interconnection between PR(O), P R ( l ) , - .  . , PR(k' - l), 
where k' = 2f1g k1 [8], [15]. In the third step, the sorted packets are 
moved to their final destinations by passing them lg n times through 
the n-shuffle connection. Therefore, a move process involving k 
routing bits can be executed over the extended shuffle-exchange 
network in O(lg2 k + lg n) time. We note that if we had used an 
ordinary shuffle-exchange network then the second step would take 
O(lg2 n)  time. The extended shuffle-exchange network avoids this by 
first concentrating the k routing bits into the first k processors and 
then using the smallest shuffle-exchange subnetwork that contains 
those k processors. 

As for the pairing process, we first observe a binary tree of n 
processors can be emulated by passing lg n times over the ordinary 
n-processor shuffle-exchange network. Since every k processors we 
choose to mark constitute the leaves of this binary tree, the pairing 
of k processors can be performed in O(1g n)  time as is already 
observed earlier. 

B. The Parallel Routing Scheme 
From the proof of Theorem 1 in Section III, each chain has two 

settings (type-0 and type-I settings), and the inputs of its switches can 
be partitioned into two equivalence classes such that the inputs in one 
equivalence class are connected to even-numbered outputs and the 
inputs in the other equivalence class are connected to odd-numbered 
outputs. Once the equivalence classes of inputs in a chain are 
established, the settings of switches in the chain are straightforward. 
The parallel algorithm that follows will use such equivalence classes 
to speed up the switch settings. The following proposition shows how 
to determine the pairs of inputs that are in the same equivalence class, 
and is similar to the observation given on p. 150 in [12]. 

Proposition I :  Let { ( i , ( r t , d i g  ,,-l,.-.,di,dh)): 0 5 i 5 n - 
1) be a unicast assignment for H ( n ) .  If ( d $ ,  -,,..., d;,dh) = 
(d;, n-l,...,d:,zi), rz = rI = 1 and i # j ,  then inputs i and 3 
are in the same equivalence class and inputs j and 5 are in another 
equivalence class. 

Remark 1: This equivalence among the inputs will be noted by 
associating each input with an ordered quadruple ( c ~ ,  i, e , , p , )  where 
cz is a single bit used to indicate if this input belongs to a closed or 
open chain (c, = 0 means i belongs to an open chain and c,  = 1 
means i belongs to a closed chain), i denotes the input itself, e, points 
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(a) (b) ( 4  
Fig. 4. The three steps of the first phase by using the unicast 15-assignment 
given in Fig. 3 as an example. 

to an input that is in the same equivalence class as this input, and 
pz ,  called the representative of this input, will be used to route this 
input. If i and j satisfy the hypothesis of Proposition 1, two ordered 
quadruples (1; i, ?; p,)  and (1; j ,  5; p,) will be established, where 
their first elements are initialized to 1 and their fourth elements are 
initialized top, = min{i, ?} and p, = min{j, I } .  If T *  = 1 and there 
is no T~ = 1 for which (dig n- l , .  . . , d;,  d i )  = (d;g n- 1 ,  . . . , d:, 2;) 
(i.e., input i is paired with an output whose dual output is idle), an 
ordered quadruple (1; i, -1; i )  will be established, where -1 is used 
to denote that input i belongs to a busy end switch of an open chain, 
or an open chain of size 1. If T ,  = 0 and T; = 1, an ordered quadruple 
(0; i, -2; i )  will be established, where -2  is used to denote that input 
i belongs to a semi-busy end switch of an open chain. 

The parallel algorithm can be roughly divided into four phases. 
In the first phase, ordered quadruples as defined in Remark 1 are 
established. In the second phase, the representative in each quadruple 
is computed such that each input knows to which chain it belongs and 
all  the inputs in the same equivalence class will agree on a common 
representative. In the third phase, each half open chain is assigned 
a type-0 or type-l setting so that the statement of Theorem 1 (i.e.. 
ko = [k/21 and kl = l k / 2 J )  is satisfied. In the fourth phase, each 
switch is set by using the representatives of its two inputs. 

1) First Phase: The first phase applies Remark 1 to establish 
ordered quadruples, and can be further decomposed into three steps. 
In the first step, packet headers are input to the processors, and the 
idle inputs which belong to semi-busy switches have their quadruples 
established. In the second step, packet headers are permuted among 
the processors so that each dual pair of processors can apply the steps 
in Remark 1 in parallel. In the third step, the remaining quadruples 
are established and moved to the processors specified by their second 
elements, and their first elements are changed to 0 if their third 
elements are - 1. An illushation of these three steps is given in Fig. 4. 

2) Second Phase: The second phase is an iterative procedure 
which computes the representative of each quadruple using a pointer 
jumping technique [4]. A chain, depending upon its type, is decom- 
posed into two sequences of quadruples in the first phase where the 
quadruples in each sequence belong to the same equivalence class. Let 
us use the quadruples in each sequence as nodes to form a directed 
graph in which a directed arc is established from a quadruple to 
another quadruple if and only if the third element of the former 
quadruple is equal to the second element of the latter quadruple. 
Then, a k-size closed chain will form two k-node closed subchains 
for which each node has an incoming arc and an outgoing arc, and 
a k-size open chain will form two k-node open subchains for which 
each source node has an outgoing arc, each sink node has an incoming 
arc, and &h of the other nodes has an incoming arc and an outgoing 
arc. For example, Fig. 5 explicitly depicts the four subchains obtained 
from the quadruples in (c) of Fig. 4. 

I( 

Fig. 5. The subchains formed from the quadruples in Fig. 4(c). 

These subchains will be used to facilitate an understanding of the 
iterative procedure. If a quadruple is in a closed subchain in the 
mth iteration, its first element is 1, its third element points to the 
second element of its 2"th successor and its last element points 
to the smallest input among the 2" second elements of its first 2" 
successors. If a quadruple is in an open subchain, the way its elements 
are updated depends on when it is known that this quadruple is in 
an open subchain. When this quadruple is at least 2" far away from 
the sink quadruple in the mth iteration, its elements are updated in 
the same way as if this quadruple is in a closed subchain. When this 
quadruple is at distance less than 2" - 1 away from the sink quadruple 
in the mth iteration, it is recognized to be in an open subchain, and 
its first element is changed to 0, its third element is changed to -1 
or -2 (the same as the third element of the sink quadruple) and its 
last element points to the second element of the sink quadruple. That 
is, for each open subchain, the updating information is exponentially 
propagated from the sink quadruple to the source quadruple. Using 
this updating procedure, after lgrkl iterations, any k quadruples 
that form a closed subchain will select the smallest input among 
their second elements as their common representative, and any IC 
quadruples that form an open subchain will select the second element 
of the sink quadruple as their common representative. For example, 
the four subchains in Fig. 5 need two iterations to determine their 
representatives at the end of which inputs 2, 3, 11 and 6 are selected 
as the representatives of the quadruples in SC: , SC:' , SC; and SC;' , 
in that order. 

Now we proceed to describe the second phase of the algorithm. 
Given a unicast k'-assignment, the second phase can take as many 
as lg rkl iterations, where k = min{ L(k' + 2 ) / 2 1 , n / 2 } .  This is 
because there is no prior information about the exact sizes of the 
subchains and mini  [(k' + 2 ) / 2 J ,  n / 2 }  is an upper bound for the 
sizes of the subchains with respect to the k'-assignment as stated 
in the previous section. Technically, each iteration can be further 
decomposed into three steps. In the first step, those quadruples whose 
first elements are 1 are duplicated and their copies are moved to 
new processors specified by their third elements. In the second step, 
each processor updates the quadruple@) that it holds as follows: 1) 
when it holds only a quadruple, it "discards" the quadruple if the 
first element of the quadruple is 1; otherwise it keeps the quadruple 
intact; 2) when it holds (1; I, i; p ~ )  and (1; i, j ;  p i ) ,  it replaces the first 
quadruple by (1; l , j ;p i )  where pi = min{p,,pl} and discards the 
second quadruple; 3) when it holds (1; I, i;pl) and (0; i ,  +; j )  where 
* is - 2 or - 1, it replaces the first quadruple by (1 ; 1, *; i )  and keeps 
the second quadruple intact. In the third step, each updated quadruple 
is moved to the processor specified by its second element if its first 
element remains 1, and its first element is changed to 0 if its third 
element is -1 or -2 .  For example, we illustrate the second phase in 
(a) to (e) of Fig. 6, where the transitions from (a) to (b) and from (b) 
to (c) constitute the first iteration, and the transitions from (c) to (d) 
and from (d) to (e) constitute the second iteration. Note that, after 

I - -- I I I T -  
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Fig. 6. The second and third phases of the parallel algorithm that follow the first phase shown in Fig. 4. 

the computation of the second phase, the two quadruples held by 
PR( i )  and PR(i)  correspond to inputs i and k of sWLs/2J. Besides, 
if the first elements of the two quadruples are 1, SWL,/ZJ belongs to 
a closed chain; otherwise, it belongs to an open chain. Furthermore, 
SWL+J belongs to a full open chain if the third elements are both 
-1 or -2, and to a half open chain if one of the third elements is 
-1 and the other is -2. 

3) Third Phase: The third phase assigns types of settings to half 
open chains as discussed in the proof of Theorem 1 and using the 
pairing process as described in Section IV-A. At the end of the 
pairing process, the third element in the quadruple corresponding 
to the busy input of each semi-busy end switch is changed to 0 
if the corresponding processor is marked type 0 or changed to 
1 if it is marked type 1. For example, Fig. 6(f) shows a result 
of the third phase, where the third elements in the quadiuples in 
PR(O) ,PR( l l )  are changed to 0 and the third elements in the 
quadruples in PR(7),PR(12) are changed to 1. 

4) Fourth Phase: Having decided the types of each chain and 
computed the representative of each quadruple, the fourth phase 
determines the settings of switches in H ( n ) .  Each switch is set by a 
dual pair of processors which hold the two quadruples that correspond 
to the inputs of this switch, and the setting depends on the type of 
the chain to which this switch belongs. 

Casel:IfPR(i) holds ( l ; i , k ; j )  andPR(7) holds(l;T,l;j),then 
swL+?J is in a closed chain. Assuming that SWL,/~J is set through, 
SWL, /~J  must be set through if i - j is even and cross otherwise. 
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Case 2: If PR( i )  holds (O;i,p;j) and PR(i)  holds ( O ; i , p ; Z )  
where p = -1 or p = -2, then SWL, /~J  is in a full open chain, 
and SWL,/~J and SWL,/~J are the end switches. Assuming that 
the smaller one of SWL,/nJ and SWL+J is set through, when 
j < 1, SWL,/~J must be set through if i - j is even and cross 
otherwise, and when I < j, SWL,/~J must be set through if 5 - 1 
is even and cross Otherwise. 

Case 3: If PR( i )  holds (0; i, q; j) and PR(i)  holds (0; T, -2; 1 )  
where q = 0 or 1, then SWLr/2J is in a half open chain and swL,/2J 
is the semi-busy end switch. When q = 0 (the half open chain is 
assigned Type-0 Setting), SWL,I~J must be set through if i is even 
and cross otherwise, and when q = 1 (the half open chain is assigned 
Type-1 Setting), SWL, /~J  must be set through if i is odd and cross 
otherwise. For example, switches SWo, SWl, SW4, SWS and SW7 
in Fig. 3 are set through and switches SW2, SW3 and SW5 are 
set cross by checking the final quadruples held in each dual pair of 
processors as shown in Fig. 6(Q. 

C. The Parallel Algorithm 
The following parallel routing algorithm formalizes the steps 

outlined in the previous subsection. 
Step1:Given ( i , ( r , , d $ ,  _,,..., d ‘ , , d ~ ) )  input toPR(i) ,PR(i)  

establishes (0; i, -2; i) if T *  = 0,O 5 i 5 n- 1. Let k’ be the number 
of rl’s whose value are 1, and let k = min { [(k’ + 2)/2J, n/2}. Let 
m be a parameter initialized to 0. 
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Step2:Move(i ,(~, ,d$,  _,,..., d I , d ~ ) ) t o P R ( z ) i f ~ ,  = l a n d  
( d L  . . . , d; , db ) is the binary representation of c, 0 5 i 5 n - 1. 

Step 3: Given PR(c) holding ( i , ~ , )  and PR(5)  holding 
( j ,  T,) ,  PR(z)  establishes (1; i ,T;!z) and PR(5)  establishes 
( l ; j , i ;p , )  where p t  = min{i,j} and p ,  = min{j,i} if 
T ,  = T,  = 1, or PR(z)  establishes ( l ; i ,  -1;i) if T ,  = 1 
and T~ = 0, or PR(3) establishes (l;j,-1;j) if T ,  = 0 and 
T~ = l,O~z~n-l.Then,(l;i,j;p,)ismovedtoPR(i),andif 
the third element is “- 1” then PR(i) changes the first element to 0, 
0 5 i 5 n - 1. (Step 1, Step 2 and Step 3 constitute the first phase.) 

Step 4: m = m + 1. If m 5 rlg kl then go to Step 5, else go 
to Step 8. 

Step 5: Duplicate (1; 1 ,  i ; p l )  and move a copy to PR(i),  0 5 i 5 
n - 1. (Those quadruples whose first elements are 1 are duplicated 
and moved to new processors specified by their third elements.) 

Srep 6: The action of each processor depends on the quadruple(s) 
that it holds: 

1) when PR(i )  holds only 1 quadruple: If the first element of the 
quadruple is 1 then PR(i)  discards the quadruple, else PR(i) 
keeps the quadruple intact; 

2) when PR(i)  holds ( l ; l , i ;p l )  and ( l ; i , j ; p z )  : PR(i)  replaces 
the first quadruple by (1; 1 , j ; p ; )  where pi = min { p , , p l }  and 
discards the second quadruple; 

3) when PR(i)  holds (1; 1, i ; p l )  and (0; i ,  * ; j )  where * is -2 or 
-1: PR(i) replaces the first quadruple by (1; I ,  *; i )  and keeps 
the second quadruple intact. 

Step 7: Move (1; i, j ;  p . )  to PR(i) ,  and if the third element is “-1” 
or “-2” then PR(i)  changes the first element to 0, 0 5 i 5 n - 1. 
Go to Step 4. (Step 4, Step 5 ,  Step 6 and Step 7 constitute the second 
phase.) 

Step 8: If PR(i) holds (0; i ,  - 1; j )  and PR(i) holds (0; E ,  -2; a) 
(i.e., input i is the busy input of SWL,I~J  which is the semi-busy 
switch of a half open chain), then PR(i) is marked type 0 or type 1 
by the pairing process, 0 5 i 5 n - 1. If PR(i) is marked type 0 
then (0; i ,  -1; j )  is changed to (0; i ,  0; j ) .  Otherwise, it is changed 
to (0; i ,  1; j ) .  (Step 8 constitutes the third phase.) 

Step 9: 
Case 1: If PR(i) holds ( l ; i , j ; p c )  and PR(i) holds 

( l ;a , l ;pz) ,  then PR(i) sets SWL,I~J through if i - p, is even and 
cross otherwise, 0 5 i 5 n - 1. 

Case 2: If PR(i) holds ( 0 ; i , p ; j )  and PR(k) holds ( O ; a , p ; l )  
where p = -1 or p = -2, then they compare j and 1. When 
j < I ,  PR(i) sets SWL,I~J through if i - j is even and cross 
otherwise, and when 1 <j, PR(2) sets SWL./~J through if i - 1 is 
even and cross otherwise, 0 5 i 5 n - 1. 

Case 3: If PR(i) holds (0; i, q; j )  and PR(i )  holds (0; i, -2; 1 )  
where q = 0 or q = 1, PR(i)  sets S W L , I ~ ~  through if i - q is even 
and cross otherwise, 0 5 i 5 n - 1. (Step 9 constitutes the fourth 

That this algorithm is correct can easily be proved and is omitted 
for lack of space. In the algorithm, move processes dominate the 
time complexity. As shown in Section IV-A, each move process can 
be executed in 0(1) time if the processors are completely intercon- 
nected, and in O(lg2 k + lg n) time if the processors are extended 
shuffle-exchange interconnected. For a unicast k-assignment, since 
there are O(lg k) move processes in the algorithm, the switches in 
H ( n )  can be set in O(lg k) time if the processors are interconnected 
by a completely connected network, and in O(lg3 k+lg klg n) time 
if they are interconnected by an extended shuffle-exchange network. 

phase.) II 

This algorithm can be recursively applied to set switches in the first 
half stages. In fact, only the first llg k] stages would apply this 
algorithm for a unicast k-assignment since this algorithm decomposes 
an assignment into two half-sized assignments stage by stage as 
required in the statement of Theorem 1. Therefore, by using this 
parallel algorithm, the routing time for an n-input Benes network to 
realize a unicast k-assignment is O(lg2 k+lg n) if the interprocessor 
connection topology is complete, and is O(lg4 k + lg2 klg n)  if 
the interprocessor connection topology is extended shuffle-exchange 
network. 

V. CONCLUDING REMARKS 

The paper presented an extension of Nassimi and Sahni’s parallel 
routing algorithm for the Benes network to unicast assignments. 
For any unicast k-assignment, the algorithm takes O(lg2 k + Ig n) 
time on the n-processor completely connected network and it takes 
O(lg4 k + lg2 k lg n) time on the n-processor extended perfect 
shuffle-exchange network. The algorithm can easily be pipelined 
to route a set of unicast assignments using O(n lg n) processors. 
Assuming that we have a unicast assignments that need to be 
realized on an n-input Benes network, it can be shown that, with 
pipelining, the total routing time is O(lgz k + Ig n + (a - 1) Ig k) 
for completely connected topology, and is O(lg4 k + lg2 k lg n + 
(a - l)(lg3 k +lg k lg n)) for extended shuffle-exchange topology. 
Thus, when a 2 lg n, the average routing time to realize a unicast 
k-assignment is reduced with pipelining to O(lg k) in the first case, 
and to O(lg3 k + lg k lg n) in the second case. 
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